Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38136816

ABSTRACT

Campylobacter infections in humans are traced mainly to poultry products. While vaccinating poultry against Campylobacter could reduce the incidence of human infections, no vaccine is yet available on the market. In our previous study using a plasmid DNA prime/recombinant protein boost vaccine regimen, vaccine candidate YP437 induced partial protective immune responses against Campylobacter in broilers. In order to optimise vaccine efficacy, the vaccination protocol was modified using a protein prime/protein boost regimen with a different number of boosters. Broilers were given two or four intramuscular protein vaccinations (with the YP437 vaccine antigen) before an oral challenge by C. jejuni during a 42-day trial. The caecal Campylobacter load, specific systemic and mucosal antibody levels and caecal microbiota in the vaccinated groups were compared with their respective placebo groups and a challenge group (Campylobacter infection only). Specific humoral immune responses were induced, but no reduction in Campylobacter caecal load was observed in any of the groups (p > 0.05). Microbiota beta diversity analysis revealed that the bacterial composition of the groups was significantly different (p ≤ 0.001), but that vaccination did not alter the relative abundance of the main bacterial taxa residing in the caeca. The candidate vaccine was ineffective in inducing a humoral immune response and therefore did not provide protection against Campylobacter spp. infection in broilers. More studies are required to find new candidates.

2.
Microorganisms ; 11(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37630543

ABSTRACT

Poultry and poultry meat are considered the most important sources of human campylobacteriosis and salmonellosis. However, data about the occurrence of Campylobacter and Salmonella concomitantly with intestinal protozoa such as Blastocystis sp. in poultry remain very scarce. Therefore, this study aimed to investigate the presence and possible interactions between these three microorganisms in fecal samples from 214 chickens collected either on farms or from live bird markets in Egypt. The results obtained showed that Campylobacter spp., Salmonella spp., and Blastocystis sp. were present in 91.6% (196/214), 44.4% (95/214), and 18.2% (39/214) of tested samples, respectively, highlighting an active circulation of these microorganisms. Moreover, a significant positive correlation was reported between the occurrence of Campylobacter spp. and Blastocystis sp. together with a significant negative correlation between Blastocystis sp. and Salmonella spp. This study confirms the association reported previously between Blastocystis sp. and Campylobacter spp. while disclosing an association between Blastocystis sp. and Salmonella spp.; it also highlights the need to improve studies on the interactions between bacteria and eukaryotes in the gut microbiota of poultry.

3.
Pharmaceutics ; 15(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37242639

ABSTRACT

Campylobacter infections, traced to poultry products, are major bacterial foodborne zoonoses, and vaccination is a potential solution to reduce these infections. In a previous experimental trial using a plasmid DNA prime/recombinant protein boost vaccine regimen, two vaccine candidates (YP437 and YP9817) induced a partially protective immune response against Campylobacter in broilers, and an impact of the protein batch on vaccine efficacy was suspected. This new study was designed to evaluate different batches of the previously studied recombinant proteins (called YP437A, YP437P and YP9817P) and to enhance the immune responses and gut microbiota studies after a C. jejuni challenge. Throughout the 42-day trial in broilers, caecal Campylobacter load, specific antibodies in serum and bile, the relative expression of cytokines and ß-defensins, and caecal microbiota were assessed. Despite there being no significant reduction in Campylobacter in the caecum of vaccinated groups, specific antibodies were detected in serum and bile, particularly for YP437A and YP9817P, whereas the production of cytokines and ß-defensins was not significant. The immune responses differed according to the batch. A slight change in microbiota was demonstrated in response to vaccination against Campylobacter. The vaccine composition and/or regimen must be further optimised.

4.
Pathogens ; 12(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839610

ABSTRACT

In Europe, there is a process hygiene criterion for Salmonella and Campylobacter on broiler carcasses after chilling. The criterion gives indicative contamination values above which corrective actions are required by food business operators. The reference methods for verifying compliance with the criterion for Salmonella and Campylobacter are international standards EN ISO 6579-1 (2017) and EN ISO 10272-2 (2017), respectively. These methods are time-consuming and expensive for food business operators. Therefore, it would be advantageous to simultaneously detect Salmonella spp. and quantify Campylobacter in the same analysis, using the same sample after the pre-enrichment step for Salmonella recovery. A duplex PCR for Salmonella detection and Campylobacter spp. enumeration was developed. Considering the method as a whole, the LOD and LOQ for Campylobacter enumeration were slightly over the limit of 3 log CFU/g set by the process hygiene criterion. A comparison of the duplex PCR method developed with the ISO method on artificially contaminated bacterial suspensions and on naturally contaminated samples demonstrated a good correlation of the results for Campylobacter enumeration when the duplex PCR was performed on samples taken before or after the pre-enrichment step, but revealed a slight bias with a large standard deviation resulting in widely spaced limits of agreement.

5.
Poult Sci ; 102(4): 102510, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764139

ABSTRACT

Campylobacter infections traced mainly to poultry products are major bacterial foodborne zoonoses. Among the many control strategies evaluated at primary poultry level to reduce these infections, vaccination could be a solution, but no effective vaccines are available to date. A better understanding of the immune mechanisms involved in protection against Campylobacter would be helpful for designing novel vaccine strategies. The present study was designed to analyze in more depth the immune responses developed in broilers in order to potentially identify which immune parameters may be important for establishing protection against Campylobacter by comparing the immune responses obtained here with those obtained in a previous study performed on vaccinated specific-pathogen-free Leghorn chickens that presented a partial reduction of Campylobacter after experimental challenge. The protection against Campylobacter colonization was evaluated at different time points over 40 d of rearing, by measuring specific IgY levels in serum and IgA antibodies in bile reflecting the systemic and mucosal humoral responses respectively and the relative expressions of 9 cecal immune marker genes (cytokines and antimicrobial peptides), which reflect the innate and cellular immune responses. Despite no reduction of Campylobacter in the cecum, a systemic immune response over time characterized by the production of specific anti-flagellin IgY was observed, in addition to upregulation of the antimicrobial peptide avian ß-defensin (AvBD) 12 gene expression in the cecum of vaccinated broilers compared with the placebo group. However, the levels of specific anti-flagellin mucosal IgA antibodies in the bile as well as the relative expression of other cecal cytokines studied was underexpressed in the vaccinated group or similar in both groups.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Poultry Diseases , Animals , Bacterial Vaccines , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter jejuni/genetics , Cecum/microbiology , Chickens , Flagellin , Immunity , Immunoglobulin A , Poultry Diseases/microbiology , Vaccination/veterinary
6.
Pathogens ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35890056

ABSTRACT

Campylobacter and Salmonella are responsible for the two major foodborne zoonotic diseases in Europe; poultry is the main infection source. Campylobacter cannot grow under aerobic conditions, but can show aerobic survival when co-cultured with other microorganisms; however, its interaction with Salmonella has not been studied yet. In this study, these two bacteria were co-cultured under controlled aerobic conditions. Different concentrations and strains of C. jejuni were incubated with or without different Salmonella serotypes (10 CFU) at 37 °C for 16 h. C. jejuni did not grow after incubation with or without Salmonella. The survival of C. jejuni was observed only for the highest initial concentration of 6 log CFU/mL with or without Salmonella. However, its survival was significantly higher when co-cultured with Salmonella. No survival was observed at lower concentrations. C. jejuni survival was positively affected by the presence of Salmonella but depended on the Salmonella serotype, the C. jejuni strain and the initial concentration. On the other hand, the Salmonella enumerations were not affected by C. jejuni. Our results suggest potential interactions between Salmonella and C. jejuni that require further investigations for a clearer understanding of their behavior in natural habitats.

7.
Vaccines (Basel) ; 10(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35746589

ABSTRACT

Campylobacteriosis is reported to be the leading zoonosis in Europe, and poultry is the main reservoir of Campylobacter. Despite all the efforts made, there is still no efficient vaccine to fight this bacterium directly in poultry. Recent studies have reported interactions between the chicken immune system and gut microbiota in response to Campylobacter colonisation. The present study was designed to analyse in more depth the immune responses and caecal microbiota following vaccination with a DNA prime/protein boost flagellin-based vaccine that induces some protection in specific-pathogen-free White Leghorn chickens, as shown previously. These data may help to improve future vaccination protocols against Campylobacter in poultry. Here a vaccinated and a placebo group were challenged by C. jejuni at the age of 19 days. A partial reduction in Campylobacter loads was observed in the vaccinated group. This was accompanied by the production of specific systemic and mucosal antibodies. Transient relatively higher levels of Interleukin-10 and antimicrobial peptide avian ß-defensin 10 gene expressions were observed in the vaccinated and placebo groups respectively. The analysis of caecal microbiota revealed the vaccination's impact on its structure and composition. Specifically, levels of operational taxonomic units classified as Ruminococcaceae and Bacillaceae increased on day 40.

8.
Pathogens ; 9(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365731

ABSTRACT

Since 2018, when a process hygiene criterion for Campylobacter in broilers at the slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level have increased. Despite numerous studies aiming to reduce Campylobacter colonization in broilers, no efficient control strategy has been identified so far. The present work assessed first the efficacy of a commercial litter treatment to reduce Campylobacter colonization in broilers during two in-vivo trials and second, its impact on cecal microbiota. The treatment does not affect broiler growth and no effect on Campylobacter counts was observed during the in-vivo trials. Nevertheless, cecal microbiota were affected by the treatment. Alpha and beta diversity were significantly different for the control and litter-treated groups on day 35. In addition, several taxa were identified as significantly associated with the different experimental groups. Further work is needed to find a suitable control measure combining different strategies in order to reduce Campylobacter.

9.
Int J Food Microbiol ; 274: 20-30, 2018 Jun 02.
Article in English | MEDLINE | ID: mdl-29579648

ABSTRACT

Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide and is associated with post-infectious neuropathies. Moreover, the chicken reservoir is described as the main source of human infection and C. jejuni sialylated lipooligosaccharides seem to play an important role in the pathogenesis of neuropathies. In this study, MultiLocus Sequence Typing (MLST) and Comparative Genomic Fingerprinting using 40 assay genes (CGF40) were used to describe C. jejuni populations within clinical isolates and a representative collection of isolates from French poultry production. In addition, the sialylation of C. jejuni LOS was assessed. Here, we report high levels of genetic diversity among both chicken and human disease C. jejuni populations. The predominance of the ST-21, ST-45, and ST-464 complexes in chicken isolates and of the ST-21, ST-206, and ST-48 complexes in the clinical isolates was observed as were correlations between some MLST and CGF40 genotypes. Furthermore, some C. jejuni genotypes were frequently isolated among clinical cases as well as all along the broiler production chain, suggesting a potentially high implication of chicken in human campylobacteriosis in France. Finally, the LOS classes A, B and C were predominant within clinical C. jejuni isolates supporting the hypothesis of a benefit in infectivity for C. jejuni isolates showing sialylated LOS.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Chickens/microbiology , Genetic Variation , Lipopolysaccharides/chemistry , Animals , France , Genotype , Humans , Multilocus Sequence Typing
10.
Vaccine ; 36(16): 2119-2125, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29555216

ABSTRACT

Vaccination of broilers is one of the potential ways to decrease Campylobacter intestinal loads and therefore may reduce human disease incidence. Despite many studies, no efficient vaccine is available yet. Using the reverse vaccinology strategy, we recently identified new vaccine candidates whose immune and protective capacities need to be evaluated in vivo. Therefore, the goal of the present study was to develop and evaluate an avian subunit vaccine protocol for poultry against Campylobacter jejuni. For this, flagellin was used as vaccine antigen candidate. A DNA prime/protein boost regimen was effective in inducing a massive protective immune response against C. jejuni in specific pathogen free Leghorn chickens. Contrastingly, the same vaccine regimen stimulated the production of antibodies against Campylobacter in conventional Ross broiler chickens harbouring maternally derived antibodies against Campylobacter, but not the control of C. jejuni colonization. These results highlight the strength of the vaccine protocol in inducing protective immunity and the significance of the avian strain and/or immune status in the induction of this response. Nevertheless, as such the vaccine protocol is not efficient in broilers to induce protection and has to be adapted; this has been done in one of our recent published work.


Subject(s)
Bacterial Vaccines/immunology , Campylobacter Infections/veterinary , Campylobacter jejuni/immunology , Poultry Diseases/immunology , Poultry Diseases/prevention & control , Vaccines, Subunit/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Vaccines/administration & dosage , Chickens , Immunization , Immunization, Secondary , Recombinant Proteins , Vaccines, Subunit/administration & dosage
11.
PLoS One ; 12(11): e0188472, 2017.
Article in English | MEDLINE | ID: mdl-29176789

ABSTRACT

Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1) significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.


Subject(s)
Bacterial Vaccines/immunology , Campylobacter/immunology , Animals , Chickens , Enzyme-Linked Immunosorbent Assay , Immunoglobulins/immunology
12.
Front Microbiol ; 8: 828, 2017.
Article in English | MEDLINE | ID: mdl-28553267

ABSTRACT

The poultry reservoir, especially broiler meat, is generally recognized as one of the most-important sources for human Campylobacteriosis. The measures to control Campylobacter targeted essentially the primary production level. The aim of this work was to evaluate the effectiveness of different treatments against natural Campylobacter colonization in a French experimental farm of free-range broilers during the whole rearing period. Five commercial products and a combination of two of them were tested and all the products were added to feed or to water at the dose recommended by the suppliers. Campylobacter loads in caeca and on carcasses of broilers at the slaughter were determined by culture methods. Natural contamination of the flock occurred at the end of the indoor rearing period between day 35 and day 42. At day 42, the multispecies probiotic added to the feed reduced the contamination of 0.55 log10 CFU/g (p = 0.02) but was not significant (p > 0.05) at the end of rearing at day 78. However, another treatment, a combination of a cation exchange clay-based product in feed and an organic acid mixture (formic acid, sodium formate, lactic acid, propionic acid) in water, led to a slight but significant reduction of 0.82 ± 0.25 log10 CFU/g (p = 0.02) compared to the control group at day 78. Testing this combination in field conditions in several flocks is needed to determine if it is biologically relevant and if it could be a valuable measure to reduce Campylobacter in broiler flocks.

13.
Int J Food Microbiol ; 247: 9-17, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-27432696

ABSTRACT

Campylobacteriosis is the most frequently reported zoonotic disease in humans in the EU since 2005. As chicken meat is the main source of contamination, reducing the level of Campylobacter in broiler chicken will lower the risk to consumers. The aim of this project was to evaluate the ability of Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers and to investigate the mechanisms that could be involved. Thirty broilers artificially contaminated with C. jejuni were treated by oral gavage with MRS broth or a bacterial suspension (107CFU) of Lb. salivarius SMXD51 (SMXD51) in MRS broth. At 14 and 35days of age, Campylobacter and Lb. salivarius loads were assessed in cecal contents. The impact of the treatment on the avian gut microbiota at day 35 was also evaluated. At day 14, the comparison between the control and treated groups showed a significant reduction (P<0.05) of 0.82 log. After 35days, a significant reduction (P<0.001) of 2.81 log in Campylobacter loads was observed and 73% of chickens treated with the culture exhibited Campylobacter loads below 7log10CFU/g. Taxonomic analysis revealed that SMXD51 treatment induced significant changes (P<0.05) in a limited number of bacterial genera of the avian gut microbiota and partially limited the impact of Campylobacter on Anaerotruncus sp. decrease and Subdoligranulum sp. increase. Thus, SMXD51 exhibits an anti-Campylobacter activity in vivo and can partially prevent the impact of Campylobacter on the avian gut microbiota.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter jejuni/physiology , Ligilactobacillus salivarius/physiology , Poultry Diseases/drug therapy , Probiotics/administration & dosage , Animals , Campylobacter Infections/drug therapy , Campylobacter Infections/microbiology , Cecum/microbiology , Chickens , Humans , Poultry Diseases/microbiology
14.
J Immunol Res ; 2016: 5715790, 2016.
Article in English | MEDLINE | ID: mdl-27413761

ABSTRACT

Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union. Human cases are mainly due to Campylobacter jejuni or Campylobacter coli, and contamination is associated with the handling and/or consumption of poultry meat. In fact, poultry constitutes the bacteria's main reservoir. A promising way of decreasing the incidence of campylobacteriosis in humans would be to decrease avian colonization. Poultry vaccination is of potential for this purpose. However, despite many studies, there is currently no vaccine available on the market to reduce the intestinal Campylobacter load in chickens. It is essential to identify and characterize new vaccine antigens. This study applied the reverse vaccinology approach to detect new vaccine candidates. The main criteria used to select immune proteins were localization, antigenicity, and number of B-epitopes. Fourteen proteins were identified as potential vaccine antigens. In vitro and in vivo experiments now need to be performed to validate the immune and protective power of these newly identified antigens.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Campylobacter Infections/prevention & control , Campylobacter jejuni/immunology , Poultry Diseases/prevention & control , Animals , Bacterial Vaccines/chemistry , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter jejuni/chemistry , Chickens/microbiology , Computational Biology , Computer Simulation , Drug Discovery/methods , Epitopes, B-Lymphocyte/immunology , Humans
15.
Front Microbiol ; 7: 553, 2016.
Article in English | MEDLINE | ID: mdl-27303366

ABSTRACT

Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.

16.
Int J Food Microbiol ; 203: 8-14, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25770428

ABSTRACT

Campylobacter was detected in 76% of broiler meat products collected in retail outlets during a monitoring plan carried out in France throughout 2009. Campylobacter jejuni was the most prevalent species (64.7% of products being contaminated). The 175 C. jejuni isolates collected were characterized. MLST typing results confirmed substantial genetic diversity as the 175 C. jejuni isolates generated 76 sequence types (STs). The ST-21, ST-45 and ST-464 complexes predominated accounting for 43% of all isolates. A class-specific PCR to screen the sialylated lipooligosaccharide (LOS) locus classes A, B and C showed that 50.3% of the C. jejuni isolates harbored sialylated LOS. The antimicrobial resistance profiles established using a subset of 97 isolates showed that resistance to tetracycline was the most common (53.6%), followed with ciprofloxacin and nalidixic acid (32.9%, and 32.0% respectively). All the tested isolates were susceptible to erythromycin, chloramphenicol and gentamicin. Clear associations were demonstrated between certain clonal complexes and LOS locus classes and between certain clonal complexes and antimicrobial resistance. This work paints a representative picture of C. jejuni isolated from poultry products circulating in France, providing data on STs, LOS locus classes and antibiotic resistance profiles in isolates recovered from products directly available to the consumer.


Subject(s)
Campylobacter jejuni/physiology , Food Microbiology/statistics & numerical data , Meat/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Drug Resistance, Microbial/genetics , France , Genetic Variation , Multilocus Sequence Typing , Polymerase Chain Reaction
17.
J Appl Toxicol ; 35(1): 48-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24496914

ABSTRACT

Most animal experiments on cosmetics safety are prohibited and since March 2013, this obligation includes sensitization tests. However, until now there has been no validated alternative in vitro method. In this work, 400 compounds used in the cosmetic industry were selected to cover the greatest diversity of structures, biological activities and sensitizing potential. These molecules were submitted to a series of tests aimed at reproducing essential steps in sensitization and to distinguish between sensitization and irritations, i.e., transcutaneous permeation (factor A), haptenation (factor B), sensitization cytokines production (factor C) and acute toxicity (factor D). The transcutaneous diffusion was measured on human skin explants using Franz cells. Haptenation was tested in solution on human serum albumin. Sensitization cytokine production was investigated by measurement of interleukin-18 release by keratinocytes. Acute toxicity was determined using an 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(75) cell viability test. As only sufficiently stable, soluble and detectable compounds are usable, 33, 72, 68 and 68 molecules were finally tested on factors A, B, C and D, respectively, and 32 were completely screened by the four factors. The individual correlation of the four factors with the reference in vivo tests was limited but the combination of these factors led to a correlation between in vivo and in vitro assays of 81.2% and the safety of the test (risk of false negative) reached 96.8%. The techniques employed are simple and inexpensive and this model of four tests appears as a promising technique to evaluate in vitro the skin sensitization potential of unknown molecules.


Subject(s)
Allergens/toxicity , Cosmetics/toxicity , Dermatitis, Allergic Contact/etiology , Keratinocytes/drug effects , Skin/drug effects , Skin/immunology , Allergens/chemistry , Animal Testing Alternatives , Cell Survival/drug effects , Cells, Cultured , Cosmetics/chemistry , Dermatitis, Allergic Contact/immunology , Diffusion Chambers, Culture , Haptens/metabolism , Humans , In Vitro Techniques , Interleukin-18/biosynthesis , Interleukin-18/immunology , Irritants/chemistry , Irritants/toxicity , Keratinocytes/immunology , Keratinocytes/pathology , Models, Statistical , Multivariate Analysis , Skin/pathology , Skin Absorption/drug effects , Toxicity Tests, Acute/methods
18.
Int J Food Microbiol ; 164(1): 7-14, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23587707

ABSTRACT

Campylobacter represents the leading cause of gastroenteritis in Europe. Campylobacteriosis is mainly due to C. jejuni and C. coli. Poultry meat is the main source of contamination, and cross-contaminations in the consumer's kitchen appear to be the important route for exposure. The aim of this study was to examine the transfer of Campylobacter from naturally contaminated raw poultry products to a cooked chicken product via the cutting board and to determine the characteristics of the involved isolates. This study showed that transfer occurred in nearly 30% of the assays and that both the C. jejuni and C. coli species were able to transfer. Transfer seems to be linked to specific isolates: some were able to transfer during separate trials while others were not. No correlation was found between transfer and adhesion to inert surfaces, but more than 90% of the isolates presented moderate or high adhesion ability. All tested isolates had the ability to adhere and invade Caco-2 cells, but presented high variability between isolates. Our results highlighted the occurrence of Campylobacter cross-contamination via the cutting board in the kitchen. Moreover, they provided new interesting data to be considered in risk assessment studies.


Subject(s)
Campylobacter/genetics , Cooking , Equipment Contamination , Food Handling/methods , Food Microbiology , Meat/microbiology , Animals , Bacterial Adhesion , Caco-2 Cells , Campylobacter/classification , Campylobacter/isolation & purification , Campylobacter Infections/microbiology , Chickens , Colony Count, Microbial , Genes, Bacterial/genetics , Genetic Variation , Genotype , Humans , Lipopolysaccharides/genetics , Molecular Sequence Data , Phylogeny
19.
Microb Drug Resist ; 19(2): 130-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23095083

ABSTRACT

The objectives of this study were to compare the in vitro adhesion and invasion of human epithelial cells, motility, and toxin production characteristics of Campylobacter-susceptible strains and their fluoroquinolone- or macrolide-resistant mutants. Susceptible strains and resistant mutants demonstrated similar adhesion capacities to epithelial cells. For Campylobacter coli, fluoroquinolone-resistant mutants with Thr86Ile or Asp90Asn substitutions showed a higher rate of invasion of Caco-2 cells than their isogenic parental strain. Fluoroquinolone resistance did not impact C. coli motility. Mutants harboring Asp90Asn had greater cytotoxic activity than the parental strain. Macrolide resistance had no impact on the studied characteristics of C. coli. For Campylobacter jejuni, fluoroquinolone-resistant mutants had slightly different invasiveness levels and significantly lower motility than the isogenic parental strain. C. jejuni macrolide-resistant mutants with A2074G substitution in the 23S rRNA gene had a higher invasiveness level than its parental strain, but mutants with A2074C in 23S rRNA and G221A in rplD showed reduced motility and similar invasion levels to the susceptible strains. Neither fluoroquinolone nor macrolide resistance appears to affect C. jejuni cytotoxicity. In conclusion, mutations that are frequently encountered in Campylobacter-resistant strains can enhance the invasiveness in Caco-2 cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Toxins/biosynthesis , Campylobacter jejuni/drug effects , Fluoroquinolones/pharmacology , Genes, Bacterial , Macrolides/pharmacology , Animals , Bacterial Adhesion/drug effects , Bacterial Adhesion/genetics , Bacterial Toxins/genetics , Caco-2 Cells , Campylobacter jejuni/genetics , Campylobacter jejuni/physiology , Drug Resistance, Bacterial/genetics , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Humans , Motion , Mutation , RNA, Ribosomal, 23S/genetics
20.
BMC Microbiol ; 10: 215, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20698984

ABSTRACT

BACKGROUND: Pseudomonas fluorescens is present in low number in the intestinal lumen and has been proposed to play a role in Crohn's disease (CD). Indeed, a highly specific antigen, I2, has been detected in CD patients and correlated to the severity of the disease. We aimed to determine whether P. fluorescens was able to adhere to human intestinal epithelial cells (IECs), induce cytotoxicity and activate a proinflammatory response. RESULTS: Behaviour of the clinical strain P. fluorescens MFN1032 was compared to that of the psychrotrophic strain P. fluorescens MF37 and the opportunistic pathogen P. aeruginosa PAO1. Both strains of P. fluorescens were found to adhere on Caco-2/TC7 and HT-29 cells. Their cytotoxicity towards these two cell lines determined by LDH release assays was dose-dependent and higher for the clinical strain MFN1032 than for MF37 but lower than P. aeruginosa PAO1. The two strains of P. fluorescens also induced IL-8 secretion by Caco-2/TC7 and HT-29 cells via the AP-1 signaling pathway whereas P. aeruginosa PAO1 potentially used the NF-kappaB pathway. CONCLUSIONS: The present work shows, for the first time, that P. fluorescens MFN1032 is able to adhere to IECs, exert cytotoxic effects and induce a proinflammatory reaction. Our results are consistent with a possible contribution of P. fluorescens in CD and could explain the presence of specific antibodies against this bacterium in the blood of patients.


Subject(s)
Epithelial Cells/immunology , Interleukin-8/immunology , Intestines/immunology , Pseudomonas Infections/immunology , Pseudomonas fluorescens/immunology , Signal Transduction , Transcription Factor AP-1/immunology , Bacterial Adhesion , Caco-2 Cells , Cytotoxicity, Immunologic , Epithelial Cells/microbiology , HT29 Cells , Humans , Intestines/microbiology , NF-kappa B/immunology , Pseudomonas Infections/microbiology , Pseudomonas fluorescens/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...